Factorized difference scheme for two-dimensional subdiffusion equation in nonhomogeneous media
نویسندگان
چکیده
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملA two level finite difference scheme for one dimensional Pennes' bioheat equation
We develop a new two level finite difference scheme for the 1D Pennes bioheat equation. We further prove that the scheme is stable and convergent unconditionally. Numerical experiments for a skin-heating model are conducted. 2005 Elsevier Inc. All rights reserved. 0096-3003/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2005.01.052 * Corresponding author. E-mail ad...
متن کاملFinite difference TVD scheme for modeling two-dimensional advection-dispersion
This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third–order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications de l'Institut Mathematique
سال: 2016
ISSN: 0350-1302,1820-7405
DOI: 10.2298/pim1613001d